
Repo

Best Practices

Issue 01

Date 2023-05-05

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2023. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2023-05-05) Copyright © Huawei Technologies Co., Ltd. i

Contents

1 Git on CodeArts Repo... 1
1.1 Overview.. 1
1.2 CodeArts Repo Cloud Operations.. 3
1.3 Local Development on Git... 8

Repo
Best Practices Contents

Issue 01 (2023-05-05) Copyright © Huawei Technologies Co., Ltd. ii

1 Git on CodeArts Repo

Overview

CodeArts Repo Cloud Operations

Local Development on Git

1.1 Overview

Purpose
This document is intended to help developers who are interested in Git to better
use Git and apply Git in the CodeArts practice.

Git Overview
Git is a distributed version control system (VCS). VCSs manage all code revisions
during software development. They store and track changes to files, and records
the development and maintenance of multiple versions. In fact, they can be used
to manage any helpful documents apart from code files. VCSs are classified into
centralized version control systems (CVCSs) and distributed version control
systems (DVCSs).

Centralized Version Control Systems
A CVCS has a central server that contains all development data, and a number of
clients that store snapshots of the files in the central server at one point. That
means the change history of project files is kept only in the central server, but not
on the clients. Therefore, developers must pull the latest version of files from the
central server each time before starting their work.

Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-05-05) Copyright © Huawei Technologies Co., Ltd. 1

Common CVCSs include CVS, VSS, SVN, and ClearCase.

The advantages and disadvantages of CVCSs are listed below.

Table 1-1 Advantages and disadvantages of CVCSs

Advantages Disadvantages

● Easy to use.
● Granular permission control on

the directory level.
● Large storage space is not

required on the clients because
they do not store the entire copy
of the code repository.

● A highly stable network is required
since developers must work online.

● If the server breaks down, the
development work is suspended.

● All data will be lost if the hard disk of
the central server is corrupted and no
proper backup is kept.

Distributed Version Control Systems
In DVCSs, every client is a complete mirror of the code repository. All data,
including the change history of project files, is stored on each client. In other
words, there is not a central server in this distributed system. Some companies
which use Git may call a computer as the "central server". However, that "central
server" is in nature the same as other clients except for the fact that it is used to
manage collaboration.

Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-05-05) Copyright © Huawei Technologies Co., Ltd. 2

Common DVCSs include Git, Mercurial, Bazaar, and BitKeeper.

The advantages and disadvantages of DVCSs are listed below.

Table 1-2 Advantages and disadvantages of DVCSs

Advantages Disadvantages

● Each client stores a complete copy
of the code repository, including
tags, branches, and version
records.

● Offline commits enable easy
cross-distance collaboration.

● Branches are cheap to create and
destroy, and fast to check out.

● High learning thresholds.
● Branches can be created only for the

entire repository but not for
individual directories.

1.2 CodeArts Repo Cloud Operations

Preparations
● You have registered an account for CodeArts Repo.
● You already have a Git client.
● A project has been created.

Cloud Repositories
CodeArts Repo allows you to create, clone, and manage cloud repositories. You
can manage branches, tags, repository members, and keys, and perform

Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-05-05) Copyright © Huawei Technologies Co., Ltd. 3

https://support.huaweicloud.com/intl/en-us/usermanual-codehub/repo_ug_0006.html
https://support.huaweicloud.com/intl/en-us/usermanual-projectman/devcloud_hlp_00021sm.html

operations on code, including committing, pulling, pushing, viewing, and online
editing. For more details about cloud repositories, see Service Overview.

Creating an Empty Repository
1. On the CodeArts Repo homepage, click New Repository.

2. Enter the basic repository information, as shown in the following figure.

3. Click OK to create the repository. The repository list page is displayed.

Setting the SSH Keys or HTTPS Password

SSH keys and HTTPS password are credentials for communication between a client
and server. Set them first before you clone or push a repository on your computer.

Setting SSH Keys

Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-05-05) Copyright © Huawei Technologies Co., Ltd. 4

https://support.huaweicloud.com/intl/en-us/productdesc-codehub/devcloud_pdtd_20001.html

SSH keys are used when a client communicates with CodeArts Repo over the SSH
protocol. If you have downloaded Git Bash for Windows and generated an SSH
key pair in the process, skip this section.

Step 1 Open the Git client (Git Bash or Linux CLI), enter the following command, and
press Enter for three times.
ssh-keygen -t rsa -C "<email address>"

The generated SSH key pair is stored in ~/.ssh/id_rsa and ~/.ssh/id_rsa.pub by
default.

Step 2 Add the SSH key to CodeArts Repo.

Open the Git client (Git Bash or Linux CLI) and run the following command to
print the SSH key in ~/.ssh/id_rsa.pub.

Step 3 Copy the preceding SSH key content, log in to your CodeArts Repo repository list
page, click the nickname in the upper right corner, and choose This Account
Settings > SSH Keys.

Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-05-05) Copyright © Huawei Technologies Co., Ltd. 5

Step 4 On the SSK Keys page, click Add SSH Key. In the displayed Add SSH Key page,
enter the information shown in the following figure and click OK. A message is
displayed, indicating that the operation is successful.

The SSH key has been added. You can proceed to set an HTTPS password.

----End

Setting an HTTPS Password

An HTTPS password is used when a client communicates with CodeArts Repo over
HTTPS. To set an HTTPS password, perform the following steps:

Step 1 Log in to the CodeArts Repo service repository list page, click the alias in the
upper right corner, and choose This Account Settings > HTTP Password.

Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-05-05) Copyright © Huawei Technologies Co., Ltd. 6

Step 2 Click Set new password, and then click Change to change the password. (If you
have set an HTTPS password and are using it, click Change.)

Step 3 Enter the new password and email verification code, select I have read and agree
to the Privacy Statement and CodeArts Service Statement, and click OK. A
message is displayed, indicating that the operation is successful.

----End

Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-05-05) Copyright © Huawei Technologies Co., Ltd. 7

1.3 Local Development on Git

Background
After creating a repository with a README file in CodeArts Repo, an architect or
project manager pushes the architecture code to the repository. Other developers
then clone the architecture code to their local computers for incremental
development.

NO TE

● Git supports code transmission over SSH and HTTPS. The SSH protocol is used as an
example.

● If you want to use the HTTPS protocol, download the HTTPS password, and enter the
HTTPS username and password when cloning or pushing code.

● The SSH URL and HTTPS URL of the same repository are different.

Pushing Architecture Code
1. Open the architecture code on the local computer. Ensure that the name of

the root directory (CodeArts) is the same as that of the code repository
created in the cloud. Right-click in the root directory and choose Git Bash
Here.

2. Push local code to the cloud.
Run commands on Git Bash as instructed below.

a. Initialize a local code repository. After this command is executed, a .git
directory is generated in D:/code/repo1/.
$ git init

b. Associate the local repository with the one in the cloud.
$ git remote add origin repoUrl

You can switch to the repository details page, click Clone/Download, and
click the highlighted tab in the following figure to obtain the repoUrl
value.

c. Push code to the cloud repository.

Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-05-05) Copyright © Huawei Technologies Co., Ltd. 8

$ git add .
$ git commit -m "init project"
$ git branch --set-upstream-to=origin/master master
$ git pull --rebase
$ git push

Cloning Code
Clone the architecture code from the cloud to the local computer.

1. In the directory where you want to clone the code, right click and choose Git
Bash Here.

2. Run the following command to clone the repository. Click Clone/Download
and click the highlighted tab in the following figure to obtain the repoUrl
value
$ git clone repoUrl//Clone the code from the remote repository to the local computer.

Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-05-05) Copyright © Huawei Technologies Co., Ltd. 9

Committing Code
A change travels from the working directory, stage, and local repository before
being pushed to the remote repository.

Executing corresponding git commands can move a file between the four areas.

The following commands are involved:

1. #git add/rm filename //Add changes from the working directory to the stage
after creating, editing, or deleting files.

2. #git commit –m "commit message" //Commit the files from the stage to
the local repository.

3. #git push //Push the files from the local repository to the remote one.

Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-05-05) Copyright © Huawei Technologies Co., Ltd. 10

Performing Branch Operations
● Create a branch.

In Git, creating a branch is not to copy a repository, but to create a HEAD, a
movable pointer pointing to the last commit. A branch in nature is a file that
contains the 40-byte SHA-1 checksum of the commit it points to.
#git branch branchName commitID

A new branch is pulled based on the specified commit ID. If no commit ID is
specified, the branch is pulled from the commit that HEAD points to.
For example, to create a feature branch, run git branch feature.

● Check out a branch.
Run the following command:
#git checkout branchName

For example, to check out the feature branch, run git checkout feature.

● Integrate branches.
There are two ways to integrate changes from one branch to another: git
merge and git rebase. The following describes the differences between them.
Assume that C4 and C3 are added to the master branch and hotfix branch
respectively. The hotfix branch is now ready to be integrated to the master
branch.

Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-05-05) Copyright © Huawei Technologies Co., Ltd. 11

a. Three-way merge integrates C3, C4, and their most recent common
ancestor C2. Merging is simple to operate, but a new commit C5 is
created, resulting in a less readable commit history.
#git checkout master
#git merge hotfix

b. Git rebase saves the changes introduced to C4 as a patch in the .git/
rebase directory, synchronizes the patch C4' to the hotfix branch, and
applies the patch on top of C3.
#git checkout master
#git rebase hotfix

● Resolve conflicts.

a. Scenario 1: The same line of code is changed in both the two branches to
merge.

Solution

i. Manually merge the change that you think is proper.
ii. Commit the change.

Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-05-05) Copyright © Huawei Technologies Co., Ltd. 12

b. Scenario 2: A file is renamed in two different ways.
Solution

i. Check which name is correct and delete the incorrect one.
ii. Commit the change.

Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-05-05) Copyright © Huawei Technologies Co., Ltd. 13

	Contents
	1 Git on CodeArts Repo
	1.1 Overview
	1.2 CodeArts Repo Cloud Operations
	1.3 Local Development on Git

